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Abstract

We have measured extended X-ray absorption ®ne structure (EXAFS) and dc conductivity r of the liquid and glassy

As2Se3. Each |F(r)|, the magnitude of the Fourier transform of EXAFS oscillations around As and Se atoms, has a

symmetric peak around 2.5 �A. The curve ®tting analysis indicates the presence of chemical order and no homopolar

As±As and Se±Se bonds. When liquid As2Se3 is cooled to the glassy state through the supercooled state, the inter-layer

correlation increases and the two-dimensional (2D) As2Se3 network structure transforms to a three-dimensional (3D)

one. This transformation is the reason for the change in the temperature variation of the coordination number N

around 300°C whose temperature is higher than Tg(� 181°C). The change in the slope of log r versus 1/T around 300°C

is assumed to be associated with the appearance of broadened and localized charged defect states near the band

tail. Ó 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Crystalline As2Se3 has a covalent network
structure which contains threefold coordinated As
atoms and twofold coordinated Se atoms [1]. This
network forms stacked layers which are held to-
gether by the van der Waals force. The X-ray and
neutron di�raction (ND) experiments [2,3] reveal
that the local structures of liquid and glassy As2Se3

are similar to the fundamental structural units of
the crystal. The ®rst peak at 2.4 �A in the radial
distribution corresponding to As±Se bond length
in liquid As2Se3 is well resolved from subsequent

features which implies that the intra-layer corre-
lation is dominant [4]. There are few di�raction
experiments on liquid As2Se3 which cover the
temperature range from the liquid to glass through
the supercooled state. Furthermore, the di�culty
of the analysis of the experimental data for dif-
fraction lies in the fact that it is almost impossible
to separate the partial structure factor Sab(Q),
from the total structure factor S(Q). This di�culty
is because X-ray form factors and neutron scat-
tering lengths of the two atoms in As2Se3 are
similar and the As±As, Se±Se and As±Se bond
lengths are not very di�erent. The reason for the
limited partial structural information is because of
a lack of suitable isotopes for ND to separate
Sab(Q). The extended X-ray absorption ®ne struc-
ture (EXAFS) technique is complementary to ND
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since it can provide selective information con-
cerning the local structure of the liquid and glassy
As2Se3. The highest ®lled electronic band, the va-
lence band of As2Se3, is formed by the overlap
between lone pair (LP) orbitals and As±Se bond-
ing r orbitals. The band gap depends on the in-
teraction between LP orbitals. It should be noticed
that structural modi®cations are associated with
the di�erence in the bonding energies and the
transfer of LP electrons to the neighboring sites
due to the large electronic polarizability of the
chalcogen [5]. Disorder produces a tail of localized
states extending from the valence band and also
from the conduction band formed by the anti-
bonding orbitals into the energy gap between these
two bands. The localization favors the response of
atoms to the trapped charges to form a valence
alternation defect pair [5]. Recently Hosokawa
et al. have reported that the di�raction pattern of
liquid As2Se3 contains a ®rst sharp di�raction peak
(FSDP) in S(Q) [2], which gives the evidence for
the medium range order (MRO) [6]. The FSDP
remains up to 900°C where liquid As2Se3 changes
from the semiconducting to the metallic state [7].
We have also found [8] that liquid As2Te3 trans-
forms from the two-dimensional (2D) network
structure to the one-dimensional (1D) chain
structure with metallic properties around 500°C
accompanied by volume contraction.

In this paper, we report the results for the
EXAFS and dc conductivity r, measurements for
liquid As2Se3 and discuss how the network con-
®gurations and the electronic states change when
liquid As2Se3 is cooled below the glass transition
temperature, Tg(� 181°C), through supercooled
liquid state.

2. Experimental

The mixture was prepared in the same way as
described elsewhere [7]. The electrical conductivity
r, of the As2Se3 has been measured by the dc four
probe method using a Pyrex glass cell with tung-
sten electrodes in the temperature range between
145°C and 500°C. The EXAFS experiments for the
As2Se3 were carried out on As and Se K-edges
using the spectrometer installed at BL-10B station

of the Photon Factory at the National Laboratory
for High Energy Physics (KEK) in the temperature
range between 110°C and 500°C. A quartz cell
with the sample space (50 lm in thickness) was
employed. The liquid As2Se3 was pushed into the
sample space by He gas. Further experimental
details are described elsewhere [7±9].

3. Results

Fig. 1 shows the EXAFS oscillations v(k), up to
14 �Aÿ1 for As and Se K-edges. The oscillations are
detectable in high k region (4 � 12 �Aÿ1) where the
signal-to-noise ratio is smaller. Such a good qual-
ity of the spectra was obtained even at high tem-
perature. Fig. 2 shows the magnitude of the
Fourier transform of v(k), |F(r)|, obtained around
the central As and Se atoms for liquid As2Se3 at
di�erent temperatures including temperatures for
which the samples were in supercooled and glassy

Fig. 1. EXAFS oscillations v(k), obtained around the As K-

edge (a) and Se K-edge (b) for As2Se3 at various temperatures

between 110°C and 500°C.
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states. Of particular interest, each |F(r)| has a
symmetric peak around 2.5 �A and the amplitude of
peak increases with decreasing temperature. The
one-shell curve ®tting analysis which is enough to
derive the structural parameters has been carried
out in k ranging from 3 to 12 �Aÿ1 by using the
theoretical parameters calculated by the FEFF
code [10,11]. The As±Se bond length is deduced to
be 2.41 � 0.01 �A which is independent of tem-
perature. The important ®ndings derived from
one-shell curve ®tting analysis are presence of the
chemical order, so that there exist no homopolar
bonds, i.e., As±As and Se±Se. The chemical order
is preserved at least up to 500°C. This preservation
is in contrast to liquid As2Te3 in which |F(r)| curves
are assymmetric which may be due to homopolar
bonds As±As and Te±Te [8]. Fig. 3 shows the
temperature variations of the coordination num-
ber N, around the central As and Se atoms, re-
spectively. The N around the As atoms changes
from 2.6 � 0.1 at 500°C to 3.0 � 0.1 near Tg with
decreasing temperature. Around the Se atoms N

changes from 1.8 � 0.1 at 500°C to 2.0 � 0.1 near
Tg. Our results for glassy state below Tg agree with
previous results [9], that is, at the stoichiometric
As2Se3 composition As atoms are threefold coor-
dinated while Se atoms are twofold coordinated. It
is interesting to note that di�erences in tempera-
ture dependence of N are observed near Tg and
300°C which are denoted by hatched lines in
Fig. 3. Fig. 4 shows the temperature variations of
the mean square displacement r2, for neighboring

Fig. 3. Temperature variations of the coordination number N

for neighboring atoms. Solid circles indicate N for Se atoms

around a central As atom. Squares indicate N for As atoms

around a central Se atom. The bars indicate the limit of errors.

The hatched lines represent the regions where the di�erence in

the temperature variations of N appears.

Fig. 4. Temperature variations of the mean square displace-

ment r2 for neighboring atoms. Solid circles indicate r2 for Se

atoms around a central As atom. Squares indicate r2 for As

atoms around a central Se atom. The bars indicate the limit of

errors. The solid line is drawn as guide for the eye.

Fig. 2. The magnitudes of the Fourier transform of kv(k), |F(r)|,

obtained around the As K-edge (a) and Se K-edge (b) for

As2Se3 at various temperatures between 110°C and 500°C.
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atoms around As and Se atoms. A linear function
is ®tted to the r2 data. It is noteworthy that r2s are
the same for the As±Se and Se±As pairs. In Fig. 5
the d.c. conductivity r, for As2Se3 is plotted as a
function of 1/T in the temperature range between
145°C and 500°C. A slight change in the slope of
log r versus 1/T curve is observed around 300°C,
where a rapid increase in N around As and Se is
observed, as seen in Fig. 3. The activation energy
of the conductivity Er, deduced from the slope of
log r versus 1/T is 1.07 � 0.03 eV above 300°C and
0.99 � 0.03 eV below 300°C, which are in fairly
good agreement with data by Edmond [12] and
those by Hurst and Davis [13,14]. They reported
that Er above 300°C is 1.06 eV and 0.906 eV below
300°C [15].

4. Discussion

The analysis of |F(r)| derived from EXAFS data
reveals that the chemical order of the As±Se net-
work is at least preserved to 500°C for liquid
As2Se3. The bonding energies reported in the lit-
erature [13] are 52 kcal/mol for As±Se, 49 kcal/mol
for Se±Se and 46 kcal/mol for As±As bond. Thus,
the di�erences in these energies show that As±Se
bonds are more favored, resulting in the chemical
order. The X-ray di�raction pattern of liquid
As2Se3 [2] provides that the Se±Se separation cor-
responding to the second peak of the radial distri-
bution function, g(r) is around 3.6 �A at 500°C and
the bond length of the As±Se pairs derived from the
present EXAFS analysis is 2.4 �A at 500°C. Since
the building unit in liquid As2Se3 is considered to
be an AsSe2=3 shallow pyramid with a triangular
base [4], the bond angle of bonded Se±As±Se or
As±Se±As units in the liquid As2Se3 is estimated to
be around 100°, which is close to that in the crys-
talline and amorphous states [1,4]. In spite of dif-
ference between the local environments around the
threefold coordinated As atom and those around
the twofold coordinated Se atom, the mean square
displacement r2, are the same for As±Se and Se±As
pairs at various temperatures, as shown in Fig. 4.
We suggest that this is due to a ring arrangement
within the layer which is a favorable con®guration
to stabilize the chemically ordered network struc-
ture. The S(Q) curve for liquid As2Se3 deduced
from the X-ray di�raction measurement contains
the FSDP up to 900°C [9], which is evidence for the
existence of MRO for temperatures below 900°C.
It is instructive to note that the FSDP in S(Q) for
liquid and glassy As2Se3 arises from the MRO
within layer, judging from the similarity of r2s for
the As±Se and Se±As pairs. The N around As and
Se in the liquid state at temperatures higher than Tg

decreases by thermal breaking of bonds between
As and Se. Around 300°C, the network may begin
to stack in layers with increase of inter-layer cor-
relation and extend to the 3D space with decreasing
temperature,and is consequently frozen at Tg.
There appear nearly half ®lled p-like nonbonding
(LP) states around the twofold coordinated As
atoms caused by breaking of bonds between As
and Se. The charged pair defects (D� and Dÿ) due

Fig. 5. Temperature variations of the d.c. conductivity r for

As2Se3 as a function of the reciprocal absolute temperature in

the range between 145°C and 500°C. Error bars are within

circles. The solid and dashed lines are drawn as guides for the

eye.
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to charge transfer and bond rearrangement be-
tween Se and As create the localized states near the
band tail. The behavior of r below 300°C is asso-
ciated with hopping conduction in the localized
states near the band tail and that of r above 300°C
is due to the conduction at a mobility edge, as
discussed by Mott and Davis [16].

5. Conclusion

In liquid As2Se3 the chemically ordered As±Se
network over the distances characteristic of MRO
is preserved. The physically reasonable assumption
is that there appears a 2D like network structure in
liquid As2Se3 to satisfy the simple covalency re-
quirements of As and Se. With decreasing tem-
perature through supercooling, the 2D like
network stacks in layers and transforms to the 3D
structure. The charged defects (D� and Dÿ) caused
by bond breaking create the localized states near
the band tail. This explains the change in the
temperature variations of N and r.
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